Canvas drawImage vs putImageData (v49)

Revision 49 of this benchmark created by Chad on


Description

Compare the tile drawing speed of ctx.drawImage against ctx.putImageData.

Each function pulls image data out of a source image / imageData object and writes to another canvas at varrying positions.

Note: As of 2014/03/28 ctx.drawImage() is roughly twice as fast in Chrome Version 29.0.1547.66

Preparation HTML

<canvas width=160 height=175 id="drawImageCanvas"></canvas>
<canvas width=160 height=175 id="putImageDataCanvas"></canvas>
<canvas width=160 height=175 id="tileImageCanvas"></canvas>
<img id="tileImage" src="">
<script>
var drawImageCanvas = document.getElementById('drawImageCanvas');
var drawImageCTX = drawImageCanvas.getContext('2d');

var putImageDataCanvas = document.getElementById('putImageDataCanvas');
var putImageDataCTX = putImageDataCanvas.getContext('2d');

var tileImage = document.getElementById('tileImage');

var tileImageCanvas = document.getElementById('tileImageCanvas');
var tileImageCTX = tileImageCanvas.getContext('2d');

var tileWidth = 16;
var tileHeight = 16;
var tilesWide = 10;
var tilesHigh = 11;

tileImageCTX.drawImage(tileImage, 0, 0);

function drawImageTile(ctx, image, tilesWide, tilesHigh, tileWidth, tileHeight, tileNumber, x, y)
{
        ctx.drawImage(image,(tileNumber % tilesWide)*tileWidth, Math.floor(tileNumber / tilesWide) * tileHeight, tileWidth, tileHeight, x, y, tileWidth, tileHeight);
}

function putImageDataTile(ctx, imageDataCTX, tilesWide, tilesHigh, tileWidth, tileHeight, tileNumber, x, y)
{
        ctx.putImageData(imageDataCTX.getImageData((tileNumber % tilesWide)*tileWidth, Math.floor(tileNumber / tilesWide) * tileHeight, tileWidth, tileHeight), x, y, 0, 0, tileWidth, tileHeight);
}
</script>

Test runner

Ready to run.

Testing in
TestOps/sec
Using ctx.drawImage
for (r = 0; r < 5; r++) {
  for (y = 0; y < tilesHigh; y++) {
    for (x = 0; x < tilesWide; x++) {
      drawImageTile(drawImageCTX, tileImage, tilesWide, tilesHigh, tileWidth, tileHeight, x + y * tilesWide, x * tileWidth, y * tileHeight);
    }
  }
}
ready
Using ctx.putImageData
for (r = 0; r < 5; r++) {
  for (y = 0; y < tilesHigh; y++) {
    for (x = 0; x < tilesWide; x++) {
      putImageDataTile(putImageDataCTX, tileImageCTX, tilesWide, tilesHigh, tileWidth, tileHeight, x + y * tilesWide, x * tileWidth, y * tileHeight);
    }
  }
}
ready

Revisions

You can edit these tests or add more tests to this page by appending /edit to the URL.