clip big image in small canvas (v5)

Revision 5 of this benchmark created on


Description

Goal is to draw a big image at position -100,-50 into a canvas that is 16x12 pixel small.

Preparation HTML

<canvas id="imgcanvas" width="256" height="256" style="display:none"></canvas>
<br>
<canvas id="canvas1" width="16" height="12"></canvas>
<canvas id="canvas2" width="16" height="12"></canvas>
<canvas id="canvas3" width="16" height="12"></canvas>
<canvas id="canvas4" width="16" height="12"></canvas>


<script>
  var imgcontext = document.getElementById("imgcanvas").getContext("2d");
  var context1 = document.getElementById("canvas1").getContext("2d");
  var context2 = document.getElementById("canvas2").getContext("2d");
  var context3 = document.getElementById("canvas3").getContext("2d");
  var context4 = document.getElementById("canvas4").getContext("2d");
  
  
  var left = -100,
      up = -50,
      width = document.getElementById("canvas1").width,
      height = document.getElementById("canvas1").height;
  var imagedata;
  var imagedata2;
  var image = new Image();
  image.onload = function() {
   imgcontext.drawImage(image, 0, 0);
   imagedata = imgcontext.getImageData(0, 0, 256, 256);
   imagedata2 = imgcontext.getImageData(-left, -up, width, height);
  };
  image.src = '';
</script>

Test runner

Ready to run.

Testing in
TestOps/sec
full
context1.drawImage(image, left, up);
ready
part
context2.drawImage(image, -left, -up, width, height, 0, 0, width, height);
ready
put full
context3.putImageData(imagedata, left, up);
ready
put part
context4.putImageData(imagedata2, 0, 0);
ready

Revisions

You can edit these tests or add more tests to this page by appending /edit to the URL.