jsPerf.app is an online JavaScript performance benchmark test runner & jsperf.com mirror. It is a complete rewrite in homage to the once excellent jsperf.com now with hopefully a more modern & maintainable codebase.
jsperf.com URLs are mirrored at the same path, e.g:
https://jsperf.com/negative-modulo/2
Can be accessed at:
https://jsperf.app/negative-modulo/2
Trying super-fast matrix multiplication with asm.js by using a huge pool of matrices exclusively used as asm.js heap. User code indexes matrices by their position in that pool.
github.com/acgessler Matrix mult code from Brandon Jones's Gl-matrix
<script>
// trying super-fast matrix multiplication with asm.js by using a huge pool
// of matrices exclusively used as asm.js heap. User code indexes matrices
// by their position in that pool.
// Alexander Gessler, 2013 (github.com/acgessler)
var COUNT = 100;
var elements = 16 * COUNT * 4;
var matrixpool = new ArrayBuffer((Math.ceil(elements / 4096.0) * 4096) | 0); // multiple of 4096 bytes
console.log('mpool: ' + matrixpool.length);
function mat_mod(stdlib, foreign, heap) {
"use asm";
var m = new stdlib.Float32Array(heap);
function multiply(idx_a, idx_b, idx_dest) {
idx_a = idx_a | 0;
idx_b = idx_b | 0;
idx_dest = idx_dest | 0;
var i = 0,
j = 0,
c = 0.0,
k = 0,
t0 = 0.0,
t1 = 0.0,
i0 = 0,
i1 = 1;
idx_a = idx_a << 4;
idx_b = idx_b << 4;
idx_dest = idx_dest << 4;
for (i = 0;
(i | 0) < 4; i = (i + 1) | 0) {
for (j = 0;
(j | 0) < 4; j = (j + 1) | 0) {
c = 0.0;
for (k = 0;
(k | 0) < 4; k = (k + 1) | 0) {
i0 = (idx_a + (i << 2) + k) | 0;
i1 = (idx_b + (k << 2) + j) | 0;
t0 = +m[i0 >> 2];
t1 = +m[i1 >> 2];
c = +(c + t0 * t1);
}
i1 = (idx_dest + (i << 2) + j) | 0;
m[i1 >> 2] = c;
}
}
}
function multiplyUnrolled(idx_a, idx_b, idx_dest) {
idx_a = idx_a | 0;
idx_b = idx_b | 0;
idx_dest = idx_dest | 0;
var
a00 = 0.0,
a01 = 0.0,
a02 = 0.0,
a03 = 0.0,
a10 = 0.0,
a11 = 0.0,
a12 = 0.0,
a13 = 0.0,
a20 = 0.0,
a21 = 0.0,
a22 = 0.0,
a23 = 0.0,
a30 = 0.0,
a31 = 0.0,
a32 = 0.0,
a33 = 0.0;
var
b00 = 0.0,
b01 = 0.0,
b02 = 0.0,
b03 = 0.0,
b10 = 0.0,
b11 = 0.0,
b12 = 0.0,
b13 = 0.0,
b20 = 0.0,
b21 = 0.0,
b22 = 0.0,
b23 = 0.0,
b30 = 0.0,
b31 = 0.0,
b32 = 0.0,
b33 = 0.0;
idx_a = idx_a << 4;
idx_b = idx_b << 4;
idx_dest = idx_dest << 4;
a00 = +m[(idx_a + 0) >> 2];
a01 = +m[(idx_a + 1) >> 2];
a02 = +m[(idx_a + 2) >> 2];
a03 = +m[(idx_a + 3) >> 2];
a10 = +m[(idx_a + 4) >> 2];
a11 = +m[(idx_a + 5) >> 2];
a12 = +m[(idx_a + 6) >> 2];
a13 = +m[(idx_a + 7) >> 2];
a20 = +m[(idx_a + 8) >> 2];
a21 = +m[(idx_a + 9) >> 2];
a22 = +m[(idx_a + 10) >> 2];
a23 = +m[(idx_a + 11) >> 2];
a30 = +m[(idx_a + 12) >> 2];
a31 = +m[(idx_a + 13) >> 2];
a32 = +m[(idx_a + 14) >> 2];
a33 = +m[(idx_a + 15) >> 2];
b00 = +m[(idx_b + 0) >> 2];
b01 = +m[(idx_b + 1) >> 2];
b02 = +m[(idx_b + 2) >> 2];
b03 = +m[(idx_b + 3) >> 2];
b10 = +m[(idx_b + 4) >> 2];
b11 = +m[(idx_b + 5) >> 2];
b12 = +m[(idx_b + 6) >> 2];
b13 = +m[(idx_b + 7) >> 2];
b20 = +m[(idx_b + 8) >> 2];
b21 = +m[(idx_b + 9) >> 2];
b22 = +m[(idx_b + 10) >> 2];
b23 = +m[(idx_b + 11) >> 2];
b30 = +m[(idx_b + 12) >> 2];
b31 = +m[(idx_b + 13) >> 2];
b32 = +m[(idx_b + 14) >> 2];
b33 = +m[(idx_b + 15) >> 2];
m[(idx_dest + 0) >> 2] = b00 * a00 + b01 * a10 + b02 * a20 + b03 * a30;
m[(idx_dest + 1) >> 2] = b00 * a01 + b01 * a11 + b02 * a21 + b03 * a31;
m[(idx_dest + 2) >> 2] = b00 * a02 + b01 * a12 + b02 * a22 + b03 * a32;
m[(idx_dest + 3) >> 2] = b00 * a03 + b01 * a13 + b02 * a23 + b03 * a33;
m[(idx_dest + 4) >> 2] = b10 * a00 + b11 * a10 + b12 * a20 + b13 * a30;
m[(idx_dest + 5) >> 2] = b10 * a01 + b11 * a11 + b12 * a21 + b13 * a31;
m[(idx_dest + 6) >> 2] = b10 * a02 + b11 * a12 + b12 * a22 + b13 * a32;
m[(idx_dest + 7) >> 2] = b10 * a03 + b11 * a13 + b12 * a23 + b13 * a33;
m[(idx_dest + 8) >> 2] = b20 * a00 + b21 * a10 + b22 * a20 + b23 * a30;
m[(idx_dest + 9) >> 2] = b20 * a01 + b21 * a11 + b22 * a21 + b23 * a31;
m[(idx_dest + 10) >> 2] = b20 * a02 + b21 * a12 + b22 * a22 + b23 * a32;
m[(idx_dest + 11) >> 2] = b20 * a03 + b21 * a13 + b22 * a23 + b23 * a33;
m[(idx_dest + 12) >> 2] = b30 * a00 + b31 * a10 + b32 * a20 + b33 * a30;
m[(idx_dest + 13) >> 2] = b30 * a01 + b31 * a11 + b32 * a21 + b33 * a31;
m[(idx_dest + 14) >> 2] = b30 * a02 + b31 * a12 + b32 * a22 + b33 * a32;
m[(idx_dest + 15) >> 2] = b30 * a03 + b31 * a13 + b32 * a23 + b33 * a33
}
return {
multiply: multiply,
multiplyUnrolled: multiplyUnrolled
}
}
var mod = mat_mod(window, undefined, matrixpool);
// fill all matrices with values
for (var i = matrixpool - 1; i >= 0; --i) {
matrixpool[i] = i % 2 ? 0.5 : 2.0;
}
</script>
Ready to run.
Test | Ops/sec | |
---|---|---|
matrix multiplication |
| ready |
unrolled |
| ready |
You can edit these tests or add more tests to this page by appending /edit to the URL.