# Vincenty vs Haversine vs Spherical Law of Cosines Distance Calculations [test] (v5)

## Description

[test]

code from: http://jsperf.com/vincenty-vs-haversine-distance-calculations

## Setup

``````/** Converts numeric degrees to radians */
if (typeof(Number.prototype.toRad) === "undefined") {
Number.prototype.toRad = function() {
return this * Math.PI / 180;
}
}

/**
* Calculates geodetic distance between two points specified by latitude/longitude using
* Vincenty inverse formula for ellipsoids
*
* @param   {Number} lat1, lon1: first point in decimal degrees
* @param   {Number} lat2, lon2: second point in decimal degrees
* @returns (Number} distance in metres between points
*/

function distVincenty(lat1, lon1, lat2, lon2) {
var a = 6378137,
b = 6356752.314245,
f = 1 / 298.257223563; // WGS-84 ellipsoid params
var L = (lon2 - lon1).toRad();
var U1 = Math.atan((1 - f) * Math.tan(lat1.toRad()));
var U2 = Math.atan((1 - f) * Math.tan(lat2.toRad()));
var sinU1 = Math.sin(U1),
cosU1 = Math.cos(U1);
var sinU2 = Math.sin(U2),
cosU2 = Math.cos(U2);

var lambda = L,
lambdaP, iterLimit = 100;
do {
var sinLambda = Math.sin(lambda),
cosLambda = Math.cos(lambda);
var sinSigma = Math.sqrt((cosU2 * sinLambda) * (cosU2 * sinLambda) + (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda) * (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda));
if (sinSigma == 0) return 0; // co-incident points
var cosSigma = sinU1 * sinU2 + cosU1 * cosU2 * cosLambda;
var sigma = Math.atan2(sinSigma, cosSigma);
var sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma;
var cosSqAlpha = 1 - sinAlpha * sinAlpha;
var cos2SigmaM = cosSigma - 2 * sinU1 * sinU2 / cosSqAlpha;
if (isNaN(cos2SigmaM)) cos2SigmaM = 0; // equatorial line: cosSqAlpha=0 (§6)
var C = f / 16 * cosSqAlpha * (4 + f * (4 - 3 * cosSqAlpha));
lambdaP = lambda;
lambda = L + (1 - C) * f * sinAlpha * (sigma + C * sinSigma * (cos2SigmaM + C * cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM)));
} while (Math.abs(lambda - lambdaP) > 1e-12 && --iterLimit > 0);

if (iterLimit == 0) return NaN // formula failed to converge
var uSq = cosSqAlpha * (a * a - b * b) / (b * b);
var A = 1 + uSq / 16384 * (4096 + uSq * (-768 + uSq * (320 - 175 * uSq)));
var B = uSq / 1024 * (256 + uSq * (-128 + uSq * (74 - 47 * uSq)));
var deltaSigma = B * sinSigma * (cos2SigmaM + B / 4 * (cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM) - B / 6 * cos2SigmaM * (-3 + 4 * sinSigma * sinSigma) * (-3 + 4 * cos2SigmaM * cos2SigmaM)));
var s = b * A * (sigma - deltaSigma);

return Math.round(s);
}

// Distance in kilometers between two points using the Haversine algo.

function haversine(lat1, lon1, lat2, lon2) {
var R = 6371;
var dLat = (lat2 - lat1).toRad();
var dLong = (lon2 - lon1).toRad();

var a = Math.sin(dLat / 2) * Math.sin(dLat / 2) + Math.cos(lat1.toRad()) * Math.cos(lat2.toRad()) * Math.sin(dLong / 2) * Math.sin(dLong / 2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
var d = R * c;

return Math.round(d);
}

//The Spherical Law of Cosines
//Original source: "http://www.movable-type.co.uk/scripts/latlong.html"
function SphericalCosinus(lat1, lon1, lat2, lon2) {
var R = 6371; // km
var dLon = (lon2-lon1).toRad();
var lat1 = lat1.toRad();
var lat2 = lat2.toRad();
var d = Math.acos(Math.sin(lat1)*Math.sin(lat2) +
Math.cos(lat1)*Math.cos(lat2) *
Math.cos(dLon)) * R;

return Math.round(d);
}``````

## Test runner

Testing in
TestOps/sec
Vincenty formula
``distVincenty(36.882835, 74.543777, 8.106717, 77.444168);``
``haversine(36.882835, 74.543777, 8.106717, 77.444168);``
``SphericalCosinus(36.882835, 74.543777, 8.106717, 77.444168);``