jsPerf.app is an online JavaScript performance benchmark test runner & jsperf.com mirror. It is a complete rewrite in homage to the once excellent jsperf.com now with hopefully a more modern & maintainable codebase.
jsperf.com URLs are mirrored at the same path, e.g:
https://jsperf.com/negative-modulo/2
Can be accessed at:
https://jsperf.app/negative-modulo/2
This test compares JavaScript implementations of the three main different point-to-point distance calculation equations, Haversine, Vincenty and Spherical Law of Cosines.
Among geodetics enthusiasts, Haversine is perhaps slightly looked-down upon because its accuracy can be out by 0.3% or so, whereas Vincenty is apparently accurate to 0.5mm. Of course, both methods use a theoretical spheroid, and because no-one can actually travel on either theoretical spheroid, both are only an approximation :-)
The Spherical Law of Cosines has the same accuracy as Haversine. And is nowadays due to high computational precision an equivalent alternative.
/** Converts numeric degrees to radians */
if (typeof(Number.prototype.toRad) === "undefined") {
Number.prototype.toRad = function() {
return this * Math.PI / 180;
}
}
/**
* Calculates geodetic distance between two points specified by latitude/longitude using
* Vincenty inverse formula for ellipsoids
*
* @param {Number} lat1, lon1: first point in decimal degrees
* @param {Number} lat2, lon2: second point in decimal degrees
* @returns (Number} distance in metres between points
*/
function distVincenty(lat1, lon1, lat2, lon2) {
var a = 6378137,
b = 6356752.314245,
f = 1 / 298.257223563; // WGS-84 ellipsoid params
var L = (lon2 - lon1).toRad();
var U1 = Math.atan((1 - f) * Math.tan(lat1.toRad()));
var U2 = Math.atan((1 - f) * Math.tan(lat2.toRad()));
var sinU1 = Math.sin(U1),
cosU1 = Math.cos(U1);
var sinU2 = Math.sin(U2),
cosU2 = Math.cos(U2);
var lambda = L,
lambdaP, iterLimit = 100;
do {
var sinLambda = Math.sin(lambda),
cosLambda = Math.cos(lambda);
var sinSigma = Math.sqrt((cosU2 * sinLambda) * (cosU2 * sinLambda) + (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda) * (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda));
if (sinSigma == 0) return 0; // co-incident points
var cosSigma = sinU1 * sinU2 + cosU1 * cosU2 * cosLambda;
var sigma = Math.atan2(sinSigma, cosSigma);
var sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma;
var cosSqAlpha = 1 - sinAlpha * sinAlpha;
var cos2SigmaM = cosSigma - 2 * sinU1 * sinU2 / cosSqAlpha;
if (isNaN(cos2SigmaM)) cos2SigmaM = 0; // equatorial line: cosSqAlpha=0 (§6)
var C = f / 16 * cosSqAlpha * (4 + f * (4 - 3 * cosSqAlpha));
lambdaP = lambda;
lambda = L + (1 - C) * f * sinAlpha * (sigma + C * sinSigma * (cos2SigmaM + C * cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM)));
} while (Math.abs(lambda - lambdaP) > 1e-12 && --iterLimit > 0);
if (iterLimit == 0) return NaN // formula failed to converge
var uSq = cosSqAlpha * (a * a - b * b) / (b * b);
var A = 1 + uSq / 16384 * (4096 + uSq * (-768 + uSq * (320 - 175 * uSq)));
var B = uSq / 1024 * (256 + uSq * (-128 + uSq * (74 - 47 * uSq)));
var deltaSigma = B * sinSigma * (cos2SigmaM + B / 4 * (cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM) - B / 6 * cos2SigmaM * (-3 + 4 * sinSigma * sinSigma) * (-3 + 4 * cos2SigmaM * cos2SigmaM)));
var s = b * A * (sigma - deltaSigma);
return Math.round(s);
}
// Distance in kilometers between two points using the Haversine algo.
function haversine(lat1, lon1, lat2, lon2) {
var R = 6371;
var dLat = (lat2 - lat1).toRad();
var dLong = (lon2 - lon1).toRad();
var a = Math.sin(dLat / 2) * Math.sin(dLat / 2) + Math.cos(lat1.toRad()) * Math.cos(lat2.toRad()) * Math.sin(dLong / 2) * Math.sin(dLong / 2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
var d = R * c;
return Math.round(d);
}
//The Spherical Law of Cosines
//Original source: "http://www.movable-type.co.uk/scripts/latlong.html"
function SphericalCosinus(lat1, lon1, lat2, lon2) {
var R = 6371; // km
var dLon = (lon2-lon1).toRad();
var lat1 = lat1.toRad();
var lat2 = lat2.toRad();
var d = Math.acos(Math.sin(lat1)*Math.sin(lat2) +
Math.cos(lat1)*Math.cos(lat2) *
Math.cos(dLon)) * R;
return Math.round(d);
}
//Equirectangular approximation
function eqiRec(lat1, lon1, lat2, lon2) {
var R = 6371;
var x = (lon2-lon1) * Math.cos((lat1+lat2)/2);
var y = (lat2-lat1);
var d = Math.sqrt(x*x + y*y) * R;
return Math.round(d);
}
Ready to run.
Test | Ops/sec | |
---|---|---|
Vincenty formula |
| ready |
Haversine formula |
| ready |
Spherical Law of Cosines |
| ready |
//Equirectangular approximation |
| ready |
You can edit these tests or add more tests to this page by appending /edit to the URL.